TEMPERATURE DISTRIBUTION IN A PLANAR BCDY
WITH CIRCULAR BOUNDARY AND THERMALLY
INSULATED CRACKS
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Stationary heat-conduction problems are analyzed for infinite plates with a circular hole or for
a circular disk weakened by straight-line thermally insulated cracks of arbitrary direction if
boundary conditions of the first or second kind are specified on the domain boundary.

Let N thermally insulated cuts (cracks) of length 2ip(n= 1, 2,...,N) be given in an elastic isotropic
plane related to a Cartesian coordinate system xQy. The centers Oy, of the cuts are given by the coordinates
2101 = x{’l + iyfl. The centers of the local coordinate systems x,Ony,, whose axes O, X, are identical with those

of the crack lines forming the angles a, with the Ox axis are positioned at the points Op.

It is assumed that in a body without cuts the temperature distribution is described by a given harmonic
function ty (x, y). The general temperature field in a domain with cracks can be represented by the sum

T(x, y)=1t,(x, y) -+ 1(x, Y),

where t(x, y) is the perturbed temperature field due to the presence of cuts, The cracks are thermally
insulated; therefore, on their boundaries the following conditions are satisfied:
O (x, y) _ O (x,y) __ 04h(x, y)
0 0Yn Yy,

The temperature field for an infinite plane weakened by a system of thermally insulated cracks can be
represented in the form [1]
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where 2'yk(x) is the temperature jump due to the crossing of a crack line.

A similar representation of the temperature field will be found in an infinite plate with a circular hole of
unit radius and center at the origin with N thermally insulated cracks. The boundary conditions are given of
the first or the second kind at the boundary of the hole. It can be assumed without loss of generality that the
contour v is either thermally insulated or a zero temperature is maintained on it. Then the temperature field
t(x, y) can be represented as a superposition of the solutions of two problems: The determination of the tem-
perature (of the heat flux) on the hole boundary with the aid of the formula (2) if all cracks are located outside
this unit circle y(lzl > 1, Tkl > 1), and the determination of the solution of the heat-conduction problem for a
plate with a circular hole and with a specified temperature (with heat flux) on its boundary which is equal in
magnitude but has a sign opposite to the one found above,

By using the formula (2), one obtains on the contour v {z = pexp (i0) = po] the following result:
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The temperature field t, (x, y) in the plate with a hole under the condition that

Lx Yy =—F©) (4)
is found from the relation {2}
= {1
b 9 =Re[ K, @—Fu ()] )
where
] Iz
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Py

=2

Having evaluated the Cauchy integrals over the circumference y of unit radius [3], from the formulas
(3), (5), and (6) one obtains

I
Rl zexp(—iay)
fy(%, §) =—Re — L ,\ T (t) dt. )

odomd l——zk

By adding up the expressions (2) and (7), the perturbed temperature field t(x, y) is obtained in the case
of an infinite plane with a circular hole which is stress free and on whose circumference zero temperature is
specified, as well as a system of cracks with known temperature jumps over their lines,

Assuming that the cuts do not intersect, that they are all in the interior of the domain, that the boundary
conditions (1) are satisfied on the boundaries of the cracks, and also that

i
Vv, (Hdt=0 (k=1,2, ..., N),
—iy
one obtains a system of N singular integral equations of the heat-conduction problem for determining the
unknown function v  (x):
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and ép) is the Kronecker's symbol,

Let us now consider the case of a thermally insulated boundary of a circular hole on a plane with cracks.
Starting with the formula (2), one finds the value of the heat flux on the circumference vy :

I
_a_ti _ ; C T exp(io,) __exp (-—_iak)] bt 0
0p Ly - ¢l = 2ni 2 s [ (T, —o)? (1—0T,)? oY, (1) (10)

When the condition
%

by

=—g(0) 11)
is satisfied on the boundary y, the temperature t, (%, y) in a plane with a hole is found by using the formula 21

£ (x, y) =Re [Fo @ ~F, (—l— )} : (12)
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Here
. 1
. Fo(z)=—--—_2—’—t—i—§g(o')ln(0'——z)—i—u. (13)
v

Using the relations (12) together with the expressions (13) and (10), one obtains

N
o —ne b XY exp (— iay) N dt. 14
fix, §) =Re— ;J_j Ty O (14)

The sum of the expressions (2) and (14) provides the sought representation of the perturbed temperature
field t, (%, y) for a plane with thermally insulated holes andcracks. The functions 'yk(x) are determined by the
following system of N integral equations:

n v l N &
j‘ - 2 [ 7 0eue ndt =m0, (5)
l k=1 —lIp
(x| <ln=1,2 ..., N)
The kernels Quk(t, X) are given by
6nk 1
Qun(t )= Re exp(ien) [ 1= — oot (16

It is noted that integral equations of the corresponding problems in heat conduction for a circular disk
of unit radius and with a system of N thermally insulated cracks can be obtained in a similar manner. They
are also of the form (8), (9), (15), and (16), the only difference being that in this case IT| < 1, IXpl < 1.

The integral equations arrived at for any location of the cracks can be solved numerically [4]. If there
are great distances between the cuts and between the cuts and the domain boundary, one can find analytic solu-
tions of these equations [5] by using perturbation methods.

NOTATION

T, ty t, temperature; 21, 21, crack length; N, number of cracks; x, y, rectangular Cartesian

coordinates; 2y (x), temperature jump for crossing crack line.
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